3.4.45 \(\int \frac {x \sinh ^{-1}(a x)^3}{\sqrt {1+a^2 x^2}} \, dx\) [345]

Optimal. Leaf size=64 \[ -\frac {6 x}{a}+\frac {6 \sqrt {1+a^2 x^2} \sinh ^{-1}(a x)}{a^2}-\frac {3 x \sinh ^{-1}(a x)^2}{a}+\frac {\sqrt {1+a^2 x^2} \sinh ^{-1}(a x)^3}{a^2} \]

[Out]

-6*x/a-3*x*arcsinh(a*x)^2/a+6*arcsinh(a*x)*(a^2*x^2+1)^(1/2)/a^2+arcsinh(a*x)^3*(a^2*x^2+1)^(1/2)/a^2

________________________________________________________________________________________

Rubi [A]
time = 0.09, antiderivative size = 64, normalized size of antiderivative = 1.00, number of steps used = 4, number of rules used = 3, integrand size = 21, \(\frac {\text {number of rules}}{\text {integrand size}}\) = 0.143, Rules used = {5798, 5772, 8} \begin {gather*} \frac {\sqrt {a^2 x^2+1} \sinh ^{-1}(a x)^3}{a^2}+\frac {6 \sqrt {a^2 x^2+1} \sinh ^{-1}(a x)}{a^2}-\frac {6 x}{a}-\frac {3 x \sinh ^{-1}(a x)^2}{a} \end {gather*}

Antiderivative was successfully verified.

[In]

Int[(x*ArcSinh[a*x]^3)/Sqrt[1 + a^2*x^2],x]

[Out]

(-6*x)/a + (6*Sqrt[1 + a^2*x^2]*ArcSinh[a*x])/a^2 - (3*x*ArcSinh[a*x]^2)/a + (Sqrt[1 + a^2*x^2]*ArcSinh[a*x]^3
)/a^2

Rule 8

Int[a_, x_Symbol] :> Simp[a*x, x] /; FreeQ[a, x]

Rule 5772

Int[((a_.) + ArcSinh[(c_.)*(x_)]*(b_.))^(n_.), x_Symbol] :> Simp[x*(a + b*ArcSinh[c*x])^n, x] - Dist[b*c*n, In
t[x*((a + b*ArcSinh[c*x])^(n - 1)/Sqrt[1 + c^2*x^2]), x], x] /; FreeQ[{a, b, c}, x] && GtQ[n, 0]

Rule 5798

Int[((a_.) + ArcSinh[(c_.)*(x_)]*(b_.))^(n_.)*(x_)*((d_) + (e_.)*(x_)^2)^(p_.), x_Symbol] :> Simp[(d + e*x^2)^
(p + 1)*((a + b*ArcSinh[c*x])^n/(2*e*(p + 1))), x] - Dist[b*(n/(2*c*(p + 1)))*Simp[(d + e*x^2)^p/(1 + c^2*x^2)
^p], Int[(1 + c^2*x^2)^(p + 1/2)*(a + b*ArcSinh[c*x])^(n - 1), x], x] /; FreeQ[{a, b, c, d, e, p}, x] && EqQ[e
, c^2*d] && GtQ[n, 0] && NeQ[p, -1]

Rubi steps

\begin {align*} \int \frac {x \sinh ^{-1}(a x)^3}{\sqrt {1+a^2 x^2}} \, dx &=\frac {\sqrt {1+a^2 x^2} \sinh ^{-1}(a x)^3}{a^2}-\frac {3 \int \sinh ^{-1}(a x)^2 \, dx}{a}\\ &=-\frac {3 x \sinh ^{-1}(a x)^2}{a}+\frac {\sqrt {1+a^2 x^2} \sinh ^{-1}(a x)^3}{a^2}+6 \int \frac {x \sinh ^{-1}(a x)}{\sqrt {1+a^2 x^2}} \, dx\\ &=\frac {6 \sqrt {1+a^2 x^2} \sinh ^{-1}(a x)}{a^2}-\frac {3 x \sinh ^{-1}(a x)^2}{a}+\frac {\sqrt {1+a^2 x^2} \sinh ^{-1}(a x)^3}{a^2}-\frac {6 \int 1 \, dx}{a}\\ &=-\frac {6 x}{a}+\frac {6 \sqrt {1+a^2 x^2} \sinh ^{-1}(a x)}{a^2}-\frac {3 x \sinh ^{-1}(a x)^2}{a}+\frac {\sqrt {1+a^2 x^2} \sinh ^{-1}(a x)^3}{a^2}\\ \end {align*}

________________________________________________________________________________________

Mathematica [A]
time = 0.02, size = 58, normalized size = 0.91 \begin {gather*} \frac {-6 a x+6 \sqrt {1+a^2 x^2} \sinh ^{-1}(a x)-3 a x \sinh ^{-1}(a x)^2+\sqrt {1+a^2 x^2} \sinh ^{-1}(a x)^3}{a^2} \end {gather*}

Antiderivative was successfully verified.

[In]

Integrate[(x*ArcSinh[a*x]^3)/Sqrt[1 + a^2*x^2],x]

[Out]

(-6*a*x + 6*Sqrt[1 + a^2*x^2]*ArcSinh[a*x] - 3*a*x*ArcSinh[a*x]^2 + Sqrt[1 + a^2*x^2]*ArcSinh[a*x]^3)/a^2

________________________________________________________________________________________

Maple [A]
time = 2.46, size = 90, normalized size = 1.41

method result size
default \(\frac {\arcsinh \left (a x \right )^{3} a^{2} x^{2}+\arcsinh \left (a x \right )^{3}-3 \sqrt {a^{2} x^{2}+1}\, \arcsinh \left (a x \right )^{2} a x +6 x^{2} \arcsinh \left (a x \right ) a^{2}+6 \arcsinh \left (a x \right )-6 \sqrt {a^{2} x^{2}+1}\, a x}{a^{2} \sqrt {a^{2} x^{2}+1}}\) \(90\)

Verification of antiderivative is not currently implemented for this CAS.

[In]

int(x*arcsinh(a*x)^3/(a^2*x^2+1)^(1/2),x,method=_RETURNVERBOSE)

[Out]

1/a^2/(a^2*x^2+1)^(1/2)*(arcsinh(a*x)^3*a^2*x^2+arcsinh(a*x)^3-3*(a^2*x^2+1)^(1/2)*arcsinh(a*x)^2*a*x+6*arcsin
h(a*x)*a^2*x^2+6*arcsinh(a*x)-6*(a^2*x^2+1)^(1/2)*a*x)

________________________________________________________________________________________

Maxima [A]
time = 0.26, size = 61, normalized size = 0.95 \begin {gather*} -\frac {3 \, x \operatorname {arsinh}\left (a x\right )^{2}}{a} + \frac {\sqrt {a^{2} x^{2} + 1} \operatorname {arsinh}\left (a x\right )^{3}}{a^{2}} - \frac {6 \, {\left (x - \frac {\sqrt {a^{2} x^{2} + 1} \operatorname {arsinh}\left (a x\right )}{a}\right )}}{a} \end {gather*}

Verification of antiderivative is not currently implemented for this CAS.

[In]

integrate(x*arcsinh(a*x)^3/(a^2*x^2+1)^(1/2),x, algorithm="maxima")

[Out]

-3*x*arcsinh(a*x)^2/a + sqrt(a^2*x^2 + 1)*arcsinh(a*x)^3/a^2 - 6*(x - sqrt(a^2*x^2 + 1)*arcsinh(a*x)/a)/a

________________________________________________________________________________________

Fricas [A]
time = 0.36, size = 92, normalized size = 1.44 \begin {gather*} -\frac {3 \, a x \log \left (a x + \sqrt {a^{2} x^{2} + 1}\right )^{2} - \sqrt {a^{2} x^{2} + 1} \log \left (a x + \sqrt {a^{2} x^{2} + 1}\right )^{3} + 6 \, a x - 6 \, \sqrt {a^{2} x^{2} + 1} \log \left (a x + \sqrt {a^{2} x^{2} + 1}\right )}{a^{2}} \end {gather*}

Verification of antiderivative is not currently implemented for this CAS.

[In]

integrate(x*arcsinh(a*x)^3/(a^2*x^2+1)^(1/2),x, algorithm="fricas")

[Out]

-(3*a*x*log(a*x + sqrt(a^2*x^2 + 1))^2 - sqrt(a^2*x^2 + 1)*log(a*x + sqrt(a^2*x^2 + 1))^3 + 6*a*x - 6*sqrt(a^2
*x^2 + 1)*log(a*x + sqrt(a^2*x^2 + 1)))/a^2

________________________________________________________________________________________

Sympy [A]
time = 0.34, size = 61, normalized size = 0.95 \begin {gather*} \begin {cases} - \frac {3 x \operatorname {asinh}^{2}{\left (a x \right )}}{a} - \frac {6 x}{a} + \frac {\sqrt {a^{2} x^{2} + 1} \operatorname {asinh}^{3}{\left (a x \right )}}{a^{2}} + \frac {6 \sqrt {a^{2} x^{2} + 1} \operatorname {asinh}{\left (a x \right )}}{a^{2}} & \text {for}\: a \neq 0 \\0 & \text {otherwise} \end {cases} \end {gather*}

Verification of antiderivative is not currently implemented for this CAS.

[In]

integrate(x*asinh(a*x)**3/(a**2*x**2+1)**(1/2),x)

[Out]

Piecewise((-3*x*asinh(a*x)**2/a - 6*x/a + sqrt(a**2*x**2 + 1)*asinh(a*x)**3/a**2 + 6*sqrt(a**2*x**2 + 1)*asinh
(a*x)/a**2, Ne(a, 0)), (0, True))

________________________________________________________________________________________

Giac [A]
time = 0.43, size = 101, normalized size = 1.58 \begin {gather*} \frac {\sqrt {a^{2} x^{2} + 1} \log \left (a x + \sqrt {a^{2} x^{2} + 1}\right )^{3}}{a^{2}} - \frac {3 \, {\left (x \log \left (a x + \sqrt {a^{2} x^{2} + 1}\right )^{2} + 2 \, a {\left (\frac {x}{a} - \frac {\sqrt {a^{2} x^{2} + 1} \log \left (a x + \sqrt {a^{2} x^{2} + 1}\right )}{a^{2}}\right )}\right )}}{a} \end {gather*}

Verification of antiderivative is not currently implemented for this CAS.

[In]

integrate(x*arcsinh(a*x)^3/(a^2*x^2+1)^(1/2),x, algorithm="giac")

[Out]

sqrt(a^2*x^2 + 1)*log(a*x + sqrt(a^2*x^2 + 1))^3/a^2 - 3*(x*log(a*x + sqrt(a^2*x^2 + 1))^2 + 2*a*(x/a - sqrt(a
^2*x^2 + 1)*log(a*x + sqrt(a^2*x^2 + 1))/a^2))/a

________________________________________________________________________________________

Mupad [F]
time = 0.00, size = -1, normalized size = -0.02 \begin {gather*} \int \frac {x\,{\mathrm {asinh}\left (a\,x\right )}^3}{\sqrt {a^2\,x^2+1}} \,d x \end {gather*}

Verification of antiderivative is not currently implemented for this CAS.

[In]

int((x*asinh(a*x)^3)/(a^2*x^2 + 1)^(1/2),x)

[Out]

int((x*asinh(a*x)^3)/(a^2*x^2 + 1)^(1/2), x)

________________________________________________________________________________________